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Abstract: - In this paper, natural transform combined with decomposition method is applied to the Newell-
Whitehead-Segel model for analytical solutions. For the purpose of illustration, examples on linear and 
nonlinear are considered. The results show efficiency, reliability, and simplicity of the proposed method. 
Hence, it is recommended for highly nonlinear differential models and systems. 
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1 Introduction 
Modeling real life situations deals with the 
applications of differential equations either in the 
form of linear, nonlinear, ordinary, or partial. In 
most cases, these nonlinear versions are hard to 
solve in terms of analytical or exact solutions 
(despite their immense roles). As such, there is need 
for reliable and efficient approximate or semi-
analytical methods or schemes such as the 
decomposition, and integral transform methods [1-
15]. In this present work, consideration will be on 
one of the vital models referred to as Newell-
Whitehead-Segel model equation (NWSME) whose 
general form is given as: 
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where ,b c∈ , and ,a κ +∈ . 
The NWSME has found applications in different 

areas of pure and applied sciences: nonlinear optics, 
biological systems, Rayleigh-Benard convection, 
and so on.  In recent times, the NWSME in (1) has 
attracted the attention of many researchers in terms 
of solution methods [16-21]. Other methods for 
solving differential models include of [22-25]. This 
present work aims at combining natural transform 

method with decomposition method for analytical 
solutions of  Newell-Whitehead-Segel Model of any 
form (linear and nonlinear). 
 
2 Natural Transform and Natural 
Decomposition Method 
The preliminaries of Natural Transform (NT), and 
its basic properties are given in this section [26-28].  
Let H  be a class of functions such that: 

( ) ( ){ }1 2:   , , 0 it kH g t c k k g t ce= ∃ > ∋ < , 

then, the natural transform of ( )g t  is defined and 
denoted as: 

( ) ( ) ( ) [ )
0

, , 0,stg t Q s g t e dt  tϕ ϕ
∞

−Ν   = = ∈ ∞  ∫       (2)            

provided the integral in the left hand side exists. As 
a consequence, the Inverse Natural Transform (INT) 
associated with (3) is defined and denoted as:  

  ( ){ } ( ){ } ( )1 1 , .g t Q s g tϕ− −Ν Ν = Ν =           (3)

                    
2.1.1 Properties of Natural Transform 
Considering [ ]Ν ⋅ , some of the properties associated 
with the NT are noted in [P1-P6] as follows: 
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2.1.2 Natural Transform of Derivatives 
For a continuous function, ( ),g x t  in A  as defined 
earlier, we have the following: 
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2.1.3. Natural Decomposition Method 
Let a general nonlinear nonhomogeneous partial 
differential equation be defined as: 
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where D  is a first order differential operator in t , 
R  is  the remaining part of the  linear differential 
operator, Ξ  and ( ),h x t are nonlinear differential 
operator and source term respectively. 
So taking the natural transform of (4) gives: 
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Showing that: 
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So, taking the Inverse Natural Transform (INT)  
( )1

tL− ⋅  on both sides of (7) gives:  
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Suppose the solution and the nonlinear term are 
expressed as follows according to Adomian and its 
polynomial: 
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and nA  defined as: 
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                                        (10) 
Thus, (8) becomes: 
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Therefore, the solution ( ),p x t  is determined via 
the recursive relation: 
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                                        (12) 
Whence,  ( ),p x t  is finalized as: 
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3 Examples 
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Case 1:  Let the following linear NWSE [1, 21] be 
considered: 

( ) 2
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t xx
xx e
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=
               (14) 

with an exact solution: 
( ) 2, x tx t eψ += .               (15) 

 
Procedure w.r.t Case 1:   

By applying the N-transform to (14), we have:  
[ ] [ ]3 .t xxN Nψ ψ ψ= −               (16) 

( ) ( ) [ ],0
, 3 .xx

ss R s N
ψ

ω ψ ψ
ω ω

⇒ − = −     (17) 

 ( ) ( ) [ ],0
, 3 .xx

s
 R s N

s s
ψ ωω ψ ψ∴ = + −    (18) 

Applying the N-inverse, [ ]1N − ⋅  and the initial 
condition to (18) gives: 
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Expressing the solution in series (Adomian) form: 
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Hence, the recursive relation: 
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As such, for 1,n ≥  we have the following: 
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Hence,  
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Equation (24) corresponds to the exact solution of 
the classical NWSE obtained in [1, 21]. 

Case 2:  Consider the following nonlinear NWSE 
[1, 21]: 
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Procedure w.r.t Case 2:   
By applying the N-transform to (25), we have:  
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Expressing the solution in series via (21), produces 
(32) as: 
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                                                               (33) 
Thus, the corresponding recursive relation is: 
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where the first few Adomian polynomials are: 
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In general, we have: 
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                               (36) 
The bracketed expression in (36) is a geometric 
series with first term, a λ=  and a common ratio, 

( )2 1 .
2

tr eλ
= −   Hence, 

( ) ( )
2

2

2, .
2 1

t

t

ex t
e

λψ
λ

 
 =
 + − 

               (37)

                                
The graphical solutions are presented in Fig. 1 and 
Fig.2 for Case 1 and Case 2 respectively. 
 

 
Figure1: NDM Exact and Approximate solution of 
Case 1 

 
Figure 2: NDM Exact and Approximate solutions of 
Case 2 at 0.5η =   
 
4 Concluding Remarks 
This work has successfully applied Natural 
Decomposition Method (NDM) to the Newell-
Whitehead-Segel Model for analytical solutions by 
considering both linear and nonlinear forms of the 
NWSME. The results showed that the NDM is 
efficient, effective and reliable. The solutions were 
expressed in closed form with less computational 
time involvement. The NDM can be extended to 
highly nonlinear NWSME and other related 
differential models.  
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